Climate change and anthropogenic impacts have a significant effect on natural ecosystems. As a response, tipping phenomena, i.e., abrupt qualitative changes in the dynamics of ecosystems, like transitions between alternative stable states, can be observed. We study such critical transitions, caused by an interplay between B-tipping, the rate of change of environmental forcing, and a rate-dependent basin boundary crossing. Instead of a slow trend of environmental change, we focus on pulses of variation in the carrying capacity in a simple ecological model, the spruce budworm model, and show how one pulse of environmental change can lead to tracking the current stable state or to tipping to an alternative state depending on the strength and the duration of the pulse. Moreover, we demonstrate that applying a second pulse after the first one, which can track the desired state, can lead to tipping, although its rate is slow and does not even cross the critical threshold. We explain this unexpected behavior in terms of the interacting timescales, the intrinsic ecological timescale, the rate of environmental change, and the movement of the basin boundaries separating the basins of attraction of the two alternative states.
Read full abstract