The pervasive application of nitrogen (N) fertilisers in agriculture poses a significant threat to freshwater ecosystems. The grey water footprint (GWF) is a measure of the volume of freshwater required to assimilate the relative water pollutants resulted from N leaching-runoff processes. The responses of N cycling and associated regional GWF to crop production under different irrigation methods have not been investigated. In this study, the N leaching-runoff rate, N₂O, and NH₃ emissions in croplands and the associated GWF per unit crop yield (UGWF) and annual total GWF (TGWF) of winter wheat-summer maize crop rotations across the Hebei, Shandong, and Henan Region (HSHR) of China were simulated and evaluated at the prefecture level over the 2004–2020 period. Four irrigation scenarios were modelled: furrow, sprinkler, surface drip, and subsurface drip irrigation. The results showed significant spatial and temporal heterogeneity in N leaching-runoff rates and emissions of N2O, and NH3. The N leaching-runoff rates for winter wheat and summer maize ranged from 3.9% to 10.9% and 15.0%–32.3%, respectively. With changing different irrigation methods, N leaching-runoff rates exhibited greater sensitivity than N₂O and NH₃ emissions; this sensitivity was more pronounced in winter wheat than in summer maize. Findings reveal that N pollution is influenced not only by irrigation methods but also by weather conditions, crop-specific rooting characteristics, sowing time, and soil texture. Winter wheat UGWF under the four irrigation methods mostly followed the order of furrow > sprinkler irrigation > surface drip irrigation > subsurface drip irrigation. Conversely, for summer maize, subsurface drip irrigation resulted in a higher UGWF compared to furrow irrigation, mainly due to increased water percolation thus higher N leaching-runoff rate in near-saturated soil with higher rainfall. This result reveals the potential conflict between water-saving irrigation and N pollution control. This analysis underscores the necessity of recognising the combined effects of agricultural management practices on water conservation and environmental safeguarding.
Read full abstract