Entomological surveillance in Benin has historically been limited to zones where indoor residual spraying was performed or where long-standing sentinel surveillance sites existed. However, there are significant country-wide gaps in entomological knowledge. The National Malaria Control Program (NMCP) assessed population dynamics of Anopheles vectors and malaria transmission in each of Benin's 12 departments to create an entomological risk profile. Two communes per department (24/77 communes) were chosen to reflect diverse geographies, ecologies and malaria prevalence. Two villages per commune were selected from which four households (HH) per village were used for human landing catches (HLCs). In each HH, an indoor and outdoor HLC occurred between 7 p.m. and 7 a.m. on two consecutive nights between July-September 2017. Captured Anopheles were identified, and ovaries were dissected to determine parous rate. Heads and thoraces were tested for Plasmodium falciparum sporozoites by ELISA. The Entomological Inoculation Rate (EIR) was calculated as the product of mosquito bite rate and sporozoite index. Bite rates from An. gambiae&nbsp;s.l., the primary vector species complex, differed considerably between communes; average sporozoite infection index was 3.5%. The EIR ranged from 0.02 infectious bites (ib) per human per night in the departments of Ouémé and Plateau to 1.66 ib/human/night in Collines. Based on transmission risk scales, Avrankou, Sakété and Nikki are areas of low transmission (0 < EIR < 3 ib/human/year), Adjarra, Adja Ouèrè, Zè, Toffo, Bopa, Pehunco, Pèrèrè and Kandi are of medium transmission (3 < EIR < 30 ib/human/year), and the other remaining districts are high transmission (EIR > 30 ib/human/year). The heterogeneous and diverse nature of malaria transmission in Benin was not readily apparent when only assessing entomological surveillance from sentinel sites. Prospectively, the NMCP will use study results to stratify and deploy targeted vector control interventions in districts with high EIRs to better protect populations most at-risk.
Read full abstract