Up to now, there have been no complete theoretical researches and field experiment reports on the fiber fusion loss at high altitude. Therefore, we have conducted an exploratory study on the fiber splicing loss at high altitude, and firstly analyze the influence of mode field diameter mismatch, axial offset, angle tilt or end face gap affected by high altitude on splice loss, and then discuss the influence of fusion-splicing parameters on splice loss. Besides, a mathematical model for reducing the splicing loss of single-mode fiber at high altitude is established by combining the effects of temperature, humidity, oxygen content, atmospheric pressure, gale and gravity. We have conducted repeated field fusion experiments in different altitude areas (53, 2980, 4000, 4200, 4300, 5020, and 5200 m) more than once, hence obtaining a large number of field experimental data, making a deep comparison between typical “plain” area and typical “high altitude” area. The splice loss of most fusion points achieved successfully has been reduced by at least 0.07 dB. The simulation results are basically consistent with the theoretical analysis. Ultimately, the method proposed has been directly applied to on-site splicing engineering in high altitude environment and achieves good results.
Read full abstract