We develop an invariant approach to SU(2)–structures on spin 5–manifolds. We characterize (via spinor approach) the subspaces in the spinor bundle which induce the same group isomorphic to SU(2). Moreover, we show how to induce quaternionic structure on the contact distribution of the considered SU(2)–structure. We show the invariance of certain components of the covariant derivative ∇φ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ abla \\varphi $$\\end{document}, where φ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\varphi $$\\end{document} is any spinor field defining SU(2)–structure. This shows, as expected, that (at least some of) the intrinsic torsion modules can be derived invariantly with the spinorial approach. We conclude with the explicit description of the intrinsic torsion and the characteristic connection.