Background: Modern surgical techniques allow for the correction of spinal deformity, stopping its progression and improving pain relief and social and physical functioning. These instruments have different implant designs, screws, and rod diameters and can be composed of different metal alloys with different hardnesses, which can have a significant impact on the effect of correcting spinal deformities. We designed a retrospective cohort study based on the same surgical technique and spine system using different implant sizes, and compared the results across them. Methods: This is a retrospective review of adolescent idiopathic scoliosis (AIS) patients who underwent posterior spinal fusion (PSF) between 2016 and 2022 with a minimum two-year follow-up (FU) using two spinal implant systems: 5.5 and 6.0 mm diameter screws with double 5.5 mm titanium rods (Group 1 (G1)), and 6.0 and 6.5 mm diameter pedicle screws with double 6.0 mm cobalt-chromium rods (Group 2 (G2)). The evaluated data were as follows: preoperative personal data, radiographic outcomes, complications, and health-related quality of life questionnaire (HRQoL). The parameters were reviewed preoperatively, after the final fusion, and during the FU. Results: The mean age of all 260 patients at surgery was 14.8 years. The average BMI was also similar in both groups and was noted as 21. The mean levels of fusion and screw density were similar in both groups. The mean preoperative major curves (MCs) were 57.6° and 62.5° in G1 and G2, respectively. The mean flexibility of the curves was noted as 35% in G1 and 33% in G2. After definitive surgery, the mean percentage correction of the MC was better in G2 vs. G1, with 74.5% vs. 69.8%, respectively (p < 0.001). At the final FU, the average loss of correction was 5.9° for G1 and 3.2° for G2 (p < 0.001). The mean preoperative (TK) thoracic kyphosis (T2-T5) was 12.2° in G1 and 10.8° in G2. It was corrected to 15.2° in G1 and to 13° in G2. At the FFU, we noted a significant difference in the TK (T2-T5) between the groups, with 16.7° vs. 9.6° for G1 vs. G2, respectively (p < 0.001). Statistical significance was observed between the preoperative sagittal balance and the final follow-up for both groups (p < 0.001). Conclusions: AIS patients surgically treated with screws with a larger diameter and thicker and stiffer rods showed greater correction and postoperative thoracic kyphosis without implant failure. The complication rates, implant density, and clinical outcomes remained similar. The radiographic benefits reported in this cohort study suggest that large-sized screws and stiffer rods for the correction of pediatric spinal deformities are safe and very effective.
Read full abstract