This study explores the structural, electronic, and magnetic characteristics of full-Heusler Ti2FexMn1-xAl alloys for spintronic applications. The regular Heusler structure is identified as the most stable across all x concentrations. The inverse Heusler structure exhibits half-metallic behavior with a finite energy band gap in the spin-up states, while the regular structure shows metallic behavior for both spin directions. Dirac-like points along the M→Γ direction are observed, particularly in alloys with x = 0 and 0.25 (inverse structure) and x = 0.5, 0.75, and 1 (regular structure), indicating advanced electronic properties. Magnetic analysis reveals that Ti atoms' local magnetic moments are antiparallel to those of Mn and Fe atoms. The total magnetic moment is highest for x = 1 (Ti2MnAl) and nearly zero for x = 0 (Ti2FeAl). Additionally, the inverse Heusler structure achieves 100 % spin polarization at the Fermi energy, underscoring its suitability for spintronic applications. This study highlights the potential of Ti2FexMn1-xAl alloys for future spintronic devices.
Read full abstract