AbstractPerovskites with the generic composition ABO3 exhibit an enormous variety of quantum states, such as orbital order, magnetism and superconductivity. Their flexible and comparatively simple structure allows for straightforward chemical substitution and cube-on-cube combination of different compounds in atomically sharp epitaxial heterostructures. Many of the diverse physical properties of perovskites are determined by small deviations from the ideal cubic perovskite structure, which are challenging to control. Here we show that directional imprinting of atomic displacements in the antiferromagnetic Mott insulator YVO3 can be achieved by depositing epitaxial films on different facets of the same isostructural substrate. These facets were chosen such that other well-known control parameters, including lattice and polarity mismatch with the overlayer, remain nearly unchanged. We observe signatures of staggered orbital and magnetic order and demonstrate distinct spin–orbital ordering patterns on different facets. We attribute these results to the influence of specific octahedral rotation and cation displacement patterns, which are imprinted by the substrate facet, on the covalency of the bonds and the superexchange interactions in YVO3. Our results show that substrate-induced templating of lattice distortion patterns constitutes a pathway for materials design beyond established strain-engineering strategies.
Read full abstract