To improve the mechanical properties of poly(glycolic acid) (PGA) fibers prepared by the direct spin-drawing process, the concept of “melt structure control” was introduced. A heating chamber was installed in the vicinity of the spinning head and a low take-up velocity in the melt spinning process was adopted to reduce the Deborah number in the spin-line. As a result, improvement of the toughness of as-spun fibers prepared by the melt-spinning process was accomplished, and the drawn fibers of high-strength and high-toughness were obtained by applying an additional in-line drawing process. Entanglement density reduction in the melt spinning process was found to be suppressed by installing a heating chamber as well as by lowering the take-up velocity. Through the matching of the true stress versus true strain curves of in-line drawn fibers by shifting the curves along the true-strain axis, the network draw ratio of the drawn fibers was estimated and the master curves for individual spinning conditions were prepared. The master curves were found to show steeper increases from lower true-strains for the lower Deborah number conditions, whereas the increases in birefringence and strength of the drawn fibers proceeded from the lower network draw ratios.