Herein, a novel chemiluminescence (CL) sensor was successfully developed based on chlorine doped carbon dots (Cl/CDs) for the rapid determination of bisphenol A (BPA) and nitrite. The Cl/CDs were synthesized through a hydrothermal method, using ascorbic acid as the precursor and hydrochloric acid as the dopant. It was found that Cl/CDs significantly enhanced the CL intensity of the acid-KMnO4 system, while BPA and nitrite quenched the CL intensity of the Cl/CDs-sensitized acid-KMnO4 system. Under optimal conditions, BPA exhibited a linear detection range of 0.05–10 μM, with limits of detection (LOD) and quantification (LOQ) of 0.86 nM and 2.8 nM, respectively. Nitrite showed a linear detection range of 0.7–100 μM, with LOD and LOQ of 22.5 nM and 75 nM, respectively. The CL sensor was successfully use to determine BPA in water samples and nitrite in pickles, ham and celery, with spike recovery rates of 96.3 %–104.8 % and 96.0 %–104.9 %, respectively.