Given the importance of vector radiative transfer models in ocean color remote sensing and a lack of suitable models capable of analyzing the Earth curvature effects on Mie-scattering radiances, this study presents an enhanced vector radiative transfer model for a spherical shell atmosphere geometry by the Monte Carlo method (MC-SRTM), considering the effects of Earth curvature, different atmospheric conditions, flat sea surface reflectance, polarization, high solar and sensor geometries, altitudes and wavelengths. A Monte Carlo photon transport model was employed to simulate the vector radiative transfer processes and their effects on the top-of-atmosphere (TOA) radiances. The accuracy of the MC-SRTM was verified by comparing its scalar model outputs from Henyey-Greenstein (HG) phase function with the Kattawar-Adams model results, and the mean relative differences were less than 2.75% and 4.33% for asymmetry factors (g-values) of 0.5 and 0.7, respectively. The vector mode results of MC-SRTM for a spherical shell geometry with the Mie-scattering phase matrix were compared with the PCOART-SA model results (from Polarized Coupled Ocean-Atmosphere Radiative Transfer model based on the pseudo-spherical assumption), and the mean relative differences were less than 2.67% when solar zenith angles (SZAs) > 70 ∘ and sensor viewing zenith angles (VZAs) < 60 ∘ for two aerosol models (coastal and tropospheric models). Based on the MC-SRTM, the effects of Earth curvature on TOA radiances at high SZAs and VZAs were analyzed. For pure aerosol atmosphere, the effects of Earth curvature on TOA radiances reached up to 5.36% for SZAs > 70 ∘ and VZAs < 60 ∘ and reduced to less than 2.60% for SZAs < 70 ∘ and VZAs > 60 ∘. The maximum Earth curvature effect of pure aerosol atmosphere was nearly same (10.06%) as that of the ideal molecule atmosphere. The results also showed no statistically significant differences for the aerosol-molecule mixed and pure aerosol atmospheres. Our study demonstrates that there is a need to consider the Earth curvature effects in the atmospheric correction of satellite ocean color data at high solar and sensor geometries.
Read full abstract