Current methods for interpolation and approximation within a native space rely heavily on the strict positive-definiteness of the underlying kernels. If the domains of approximation are the unit spheres in euclidean spaces, then zonal kernels (kernels that are invariant under the orthogonal group action) are strongly favored. In the implementation of these methods to handle real world problems, however, some or all of the symmetries and positive-definiteness may be lost in digitalization due to small random errors that occur unpredictably during various stages of the execution. Perturbation analysis is therefore needed to address the stability problem encountered. In this paper we study two kinds of perturbations of positive-definite kernels: small random perturbations and perturbations by Dunkl's intertwining operators [C. Dunkl, Y. Xu, Orthogonal polynomials of several variables, Encyclopedia of Mathematics and Its Applications, vol. 81, Cambridge University Press, Cambridge, 2001]. We show that with some reasonable assumptions, a small random perturbation of a strictly positive-definite kernel can still provide vehicles for interpolation and enjoy the same error estimates. We examine the actions of the Dunkl intertwining operators on zonal (strictly) positive-definite kernels on spheres. We show that the resulted kernels are (strictly) positive-definite on spheres of lower dimensions.