Triplet excited state generation plays a pivotal role in photosensitizers, however the reliance on transition metals and heavy atoms can limit the utility of these systems. In this study, we demonstrate that an interplay of competing quantum effects controls the high triplet quantum yield in a prototypical boron dipyrromethene-anthracene (BD-An) donor-acceptor dyad photosensitizer, which is only captured by an accurate treatment of both inner and outer sphere reorganization energies. Our ab initio-derived model provides excellent agreement with experimentally measured spectra, triplet yields and excited state kinetic data, including the triplet lifetime. We find that rapid triplet state formation occurs primarily via high-energy triplet states through both spin-orbit coupled charge transfer and El-Sayed's rule breaking intersystem crossing, rather than direct spin-orbit coupled charge transfer to the lowest lying triplet state. Our calculations also reveal that competing effects of nuclear tunneling, electronic state recrossing, and electronic polarizability dictate the rate of non-productive ground state recombination. This study sheds light on the quantum effects driving efficient triplet formation in the BD-An system, and offers a promising simulation methodology for diverse photochemical systems.