Closely-related plant groups with distinct microbiomes, chemistries and ecological characteristics represent tractable models to explore mechanisms shaping species spread, competitive dynamics and community assembly at the interface of native and introduced ranges. We investigated phyllosphere microbial communities, volatile organic compound (VOC) compositions, and potential interactions among introduced S. trilobata, native S. calendulacea and their hybrid in South China. S. trilobata exhibited higher α diversity but significantly different community composition compared to the native and hybrid groups. However, S. calendulacea and the hybrid shared certain microbial taxa, suggesting potential gene flow or co-existence. The potent antimicrobial VOC profile of S. trilobata, including unique compounds like p-cymene (13.33%), likely contributes to its invasion success. The hybrid's intermediate microbial and VOC profiles suggest possible consequences for species distribution, genetic exchange, and community assembly in heterogeneous environments. This hybrid deserves further study as both an opportunity for and threat to diversity maintenance. These differentiating yet connected plant groups provide insight into ecological and evolutionary dynamics shaping microbiome structure, species co-occurrence and competitive outcomes during biological exchange and habitat transformation. An interdisciplinary approach combining chemical and microbial ecology may reveal mechanisms underlying community stability and change, informing management of species spread in a globalized world.
Read full abstract