The recycling of spent lithium iron phosphate batteries has recently become a focus topic. Consequently, evaluating different spent lithium iron phosphate recycling processes becomes necessary for industrial development. Here, based on multiple perspectives of environment, economy and technology, four typical spent lithium iron phosphate recovery processes (Hydro-A: hydrometallurgical total leaching recovery process; Hydro-B(H2O2/O2): hydrometallurgical selective lithium extraction process; Pyro: Pyrometallurgical recovery process; Direct: Direct regeneration process) were compared comprehensively. The comprehensive evaluation study uses environment, economy and technology as evaluation indicators, and uses the entropy weight method and analytic hierarchy process to couple the comprehensive indicator weights. Results show that the comprehensive evaluation values of Hydro-A, Hydro-B (H2O2), Hydro-B (O2), Pyro and Direct are 0.347, 0.421, 0.442, 0.099 and 0.857, respectively. Therefore, the technological maturity of Direct should be further improved to enable early industrialization. On this basis, this study conducted a quantitative evaluation of the spent lithium iron phosphate recycling process by comprehensively considering environmental, economic and technical factors, providing further guidance for the formulation of recycling processes.
Read full abstract