A maiden attempt is made to examine and highlight the effective application of bacterial foraging (BF) to optimize several important parameters in automatic generation control (AGC) of interconnected three unequal area thermal systems, such as integral controller gains (K <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Ii</sub> ) for the secondary control, governor speed regulation parameters (R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</sub> ) for the primary control and frequency bias parameters (B <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</sub> ), and compare its performance to establish its superiority over genetic algorithm (GA) and classical methods. Comparison of convergence characteristics of BF, GA, and classical approach reveals that the BF algorithm is quite faster in optimization, leading to reduction in computational burden and giving rise to minimal computer resource utilization. Simultaneous optimization of K <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Ii</sub> , R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</sub> , and B <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</sub> parameters which surprisingly has never been attempted in the past, provides not only best dynamic response for the system but also allows use of much higher values of R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</sub> (than used in practice), that will appeal to the power industries for easier and cheaper realization of governor. Sensitivity analysis is carried out which demonstrates the robustness of the optimized K <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Ii</sub> , R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</sub> , and B <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</sub> to wide changes in inertia constant (H), reheat time constant (T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">r</sub> ), reheat coefficient (K <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">r</sub> ), system loading condition, and size and position of step load perturbation.
Read full abstract