Selective homonuclear proton correlation NMR spectroscopy (COSY) provides a useful detection tool for elucidating molecular structures and identifying chemical compositions in 1D spectroscopic patterns. However, conventional 1D selective COSY experiments highly rely on the performance of selective excitation on targeted signals and their applications generally suffer from spectral congestion in complex chemical and biological samples. Herein, based on the concept of targeted excitation on coupled proton pairs and spectroscopic separation on their respective COSY responses, we propose a 1D selective NMR approach that is capable of individually recording direct coupling correlation information of targeted proton groups for analyses on complex samples, free of spectral congestion. The performance of the proposed approach is demonstrated on a medicine sample, a biological molecule, and a real metabonomics sample of human serum. This approach shows a promising analytical technique for structural studies and component analyses in chemical and biological applications. Keywords: NMR spectroscopy, Correlation spectroscopy, Targeted signal excitation, Spectral congestion, Molecular structure analysis.