Objectives. The paper proposes a novel methodology for the classification of Chronic Obstructive Pulmonary Disease (COPD) utilizing respiratory sound attributes.Methods. The approach involves segmenting respiratory sounds into individual breaths and conducting extensive studies on this dataset. Spectral Transforms, various Wavelet Transforms are applied to capture distinct signal features. Complex Network is also employed to extract characteristic elements, generating novel representations of spectrogram data based on graph factors, including entropy, density, and position. The normalized and enriched data is then used to develop COPD classifiers using six machine learning algorithms, fine-tuning with appropriate training details and hyperparameter tuning.Results. Our results demonstrate robust performance, with ROC curves consistently exhibiting an Area Under the Curve (AUC) > 96% across different time-frequency transformations. Notably, the Random Forest algorithm achieves an AUC of 99.67%, outperforming other algorithms. Moreover, the Wavelet Daubechies 2 (Db2) consistently approaches 98% accuracy, particularly noteworthy in conjunction with the Naive Bayes algorithm.Conclusion. This study diagnosis patients through spectrogram images extracted from lung sounds. The application of Inverse Transforms, Complex Network, and Optimized Classification Algorithms yielded results beyond expectations. This methodology provides a promising approach for accurate COPD diagnosis, leveraging Machine Learning techniques applied to respiratory sound analysis.
Read full abstract