Surface water fraction mapping is an essential preprocessing step for the subpixel mapping (SPM) of surface water, providing valuable prior knowledge about surface water distribution at the subpixel level. In recent years, spectral mixture analysis (SMA) has been extensively applied to estimate surface water fractions in multispectral images by decomposing each mixed pixel into endmembers and their corresponding fractions using linear or nonlinear spectral mixture models. However, challenges emerge when introducing existing surface water fraction mapping methods to hyperspectral images (HSIs) due to insufficient exploration of spectral information. Additionally, inaccurate extraction of endmembers can result in unsatisfactory water fraction estimations. To address these issues, this paper proposes an adaptive unmixing method based on iterative multi-objective optimization for surface water fraction mapping (IMOSWFM) using Zhuhai-1 HSIs. In IMOSWFM, a modified normalized difference water fraction index (MNDWFI) was developed to fully exploit the spectral information. Furthermore, an iterative unmixing framework was adopted to dynamically extract high-quality endmembers and estimate their corresponding water fractions. Experimental results on the Zhuhai-1 HSIs from three test sites around Nanyi Lake indicate that water fraction maps obtained by IMOSWFM are closest to the reference maps compared with the other three SMA-based surface water fraction estimation methods, with the highest overall accuracy (OA) of 91.74%, 93.12%, and 89.73% in terms of pure water extraction and the lowest root-mean-square errors (RMSE) of 0.2506, 0.2403, and 0.2265 in terms of water fraction estimation. This research provides a reference for adapting existing surface water fraction mapping methods to HSIs.
Read full abstract