Nanopore metagenomic sequencing enables rapid annotating microbiological ecosystems, and the previous glacier-related sequencing applications (e.g., targeted ice sheets, ice lake, and cryoconite holes) inspire us to explore high-altitude glacier meltwater at Qilian Mountain, China (3000 to 4000 m above sea level, MASL). Our findings suggest that (1) despite only several hundred meters apart, the microbial communities and functionalities are quite different among vertical alpine distributions; (2) the high-altitude Qilian meltwater microbiome serve several main metabolic functions, including sulfur oxidation, selenite decomposing, photosynthesis, energy production, enzymic, and UV tolerant activities. Meanwhile, our Nanopore metagenomic results indicate that the microbial classifications and functionalities (e.g., chaperones, cold-shock, specific tRNA species, oxidative stress, and resistance to toxic compounds) of Qilian meltwater are highly consistent with the other glacial microbiome, emphasizing that only certain microbial species can survive in the cold environment and the molecular adaptions and lifestyles remain stable all over the world. Besides, we have shown Nanopore metagenomic sequencing can provide reliable prokaryotic classifications within or among studies, which therefore can encourage more applications in the field given faster turnaround time. However, we recommend accumulating at least 400 ng nucleic acids (after extraction) and maximizing Nanopore library preparation efficiency before on-site sequencing to obtain better resolutions.
Read full abstract