BackgroundCerebral vasospasm may lead to delayed ischemic neurological deficits following subarachnoid hemorrhage (SAH). Endothelin (ET-1) is an important factor participating in cerebral vasospasm underlying SAH. We used a specific endothelin receptor antagonist, BQ123 to assess the specific role of endothelin-1 receptor antagonist in cerebral vasospasm in a rabbit model of SAH by examining plasma ET-1 levels and the principal CT perfusion (CTP) parameters pertinent to the hemodynamic status of microcirculation following SAH. Methods102 male New Zealand white rabbits were divided into control, SAH and SAH + BQ123 intervention group (BQ123 group). Rabbit SAH model was established by double hemorrhage injection of autologous blood into the cisterna magna; Aquilion ONE was used to collect cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) which were used to evaluate cerebral microcirculation hemodynamics; Elisa was used to assess plasma ET-1 levels. Data were collected on days 1, 4, 7 and 14 following SAH, respectively. ResultsCompared with the control group, the CBF in the SAH group was significantly lower, while the MTT was significantly higher. The CBF decreased on the 4th day and reached the lowest on the 7th day. The MTT began to rise on the 4th day and peaked on the 7th day. While in the BQ123 intervention group, the CBF significantly increased while the MTT significantly decreased on the 1st and the 4th days, respectively. Compared with SAH group, plasma ET-1 levels in BQ123 group significantly increased on the earlier (1st and 4th days) but not later days (between the 7th and 14th days). In addition, the inflammatory infiltration of brain tissues in rabbits treated with BQ123 post-SAH was significantly reduced compared with SAH group. ConclusionCTP can quantify the therapeutic effect of BQ123 after SAH; Selective blockade of ET-1 endothelin receptor, BQ123 significantly improved microcirculatory perfusion along with a reduction in resultant vasogenic inflammatory responses. The effect of BQ123 on the cerebral microcirculation was lobe dependent.
Read full abstract