BackgroundThe COVID-19 pandemic has led to long-term neurological and psychological effects, including sleep disturbances. While prior studies have identified altered brain function post-COVID-19, specific functional connectivity (FC) patterns predicting sleep quality after recovery remain unclear. This study aims to identify FC patterns associated with sleep quality two months after the first negative COVID-19 antigen test. MethodsUsing a connectome-based predictive modeling (CPM) approach, we identified the functional connectome regulating sleep quality based on a 164-region parcellation. Significant connections were analyzed using mediation models to examine their role in the relationship between anxiety, depression, and sleep. ResultsFC between the right cerebellar peduncle and the left VIII of the cerebellum, and between the left middle temporal pole (MTP) and left ventral tegmental area (VTA), significantly predicted Pittsburgh Sleep Quality Index (PSQI) scores for sleep disturbances two months post-recovery (q2 = 0.059, MSE = 0.154, p = 0.017, r = 0.350). Mediation analysis showed a significant indirect effect of FC between the left MTP and VTA on the relationship between generalized anxiety and sleep disturbances (indirect effect = 0.013, 95% CI = [0.002, 0.03], pfdr <0.05). FC between the right dorsal raphe nucleus and ipsilateral regions—including occipital, parietal, and temporal areas—predicted PSQI scores for daytime dysfunction (q2 = 0.092, MSE = 0.678, p = 0.025, r = 0.342). ConclusionPost-COVID-19 brain connectivity and anxiety predict sleep quality. These findings highlight the potential for targeted therapeutic strategies to improve sleep and identify patients at risk for prolonged disturbances through FC biomarkers.
Read full abstract