Neural differentiation requires a multifaceted program to alter gene expression along the proliferation to differentiation axis. While critical changes occur at the level of transcription, post-transcriptional mechanisms allow fine-tuning of protein output. We investigated the role of tRNAs in regulating gene expression during neural differentiation by quantifying tRNA abundance in neural progenitor-biased and neuron-biased Drosophila larval brains. We found that tRNA profiles are largely consistent between progenitor-biased and neuron-biased brains but significant variation occurs for 10 cytoplasmic isodecoders (individual tRNA genes) and this establishes differential tRNA levels for 8 anticodon groups. We used these tRNA data to investigate relationships between tRNA abundance, codon optimality-mediated mRNA decay, and translation efficiency in progenitors and neurons. Our data reveal that tRNA levels strongly correlate with codon optimality-mediated mRNA decay within each cell type but generally do not explain differences in stabilizing versus destabilizing codons between cell types. Regarding translation efficiency, we found that tRNA expression in neural progenitors preferentially supports translation of mRNAs whose products are in high demand in progenitors, such as those associated with protein synthesis. In neurons, tRNA expression shifts to disfavor translation of proliferation-related transcripts and preferentially support translation of transcripts tied to neuron-specific functions like axon pathfinding and synapse formation. Overall, our analyses reveal that changes in tRNA levels along the neural differentiation axis support optimal gene expression in progenitors and neurons.
Read full abstract