We develop the formalism for computing the oscillations of the specific heat and thermal transport under rotated magnetic field in multiband superconductors with anisotropic gap and apply it to iron-based materials. We show that these oscillations change sign at low temperatures and fields, which strongly influences the experimental conclusions about the gap structure. We find that recent measurements of the specific heat oscillations indicate that the iron-based superconductors possess an anisotropic gap with deep minima or nodes close to the line connecting electron and hole pockets. We predict the behavior of the thermal conductivity that will help distinguish between these cases.
Read full abstract