Radiosensitivity differs in humans and possibly in closely related nonhuman primates. The reasons for variation in radiosensitivity are not well known. In an earlier study, we examined gene expression (GE) pre-radiation in peripheral blood among male (n = 62) and female (n = 60) rhesus macaques (n = 122), which did or did not survive (up to 60 days) after whole-body exposure of 7.0 Gy (LD66/60). Eight genes (CHD5, CHI3L1, DYSF, EPX, IGF2BP1, LCN2, MBOAT4, SLC22A4) revealed significant associations with survival. Access to a second rhesus macaque cohort (males = 40, females = 23, total n = 63) irradiated with 5.8-7.2 Gy (LD29-50/60) and some treated with gamma-tocotrienol (GT3, a radiation countermeasure) allowed us to validate these gene expression changes independently. Total RNA was isolated from whole blood samples and examined by quantitative RT-PCR on a 96-well format. cycle threshold (Ct)-values normalized to 18S rRNA were analyzed for their association with survival. Regardless of the species-specific TaqMan assay, similar results were obtained. Two genes (CHD5 and CHI3L1) out of eight revealed a significant association with survival in the second cohort, while only CHD5 (involved in DNA damage response and proliferation control) showed mean gene expression changes in the same direction for both cohorts. No expected association of CHD5 GE with dose, treatment, or sex could be established. Instead, we observed significant associations for those comparisons comprising pre-exposure samples with CHD5 Ct values ≤ 11 (total n = 17). CHD5 Ct values ≤ 11 in these comparisons were mainly associated with increased frequencies (61-100%) of non-survivors, a trend which depending on the sample numbers, reached significance (P = 0.03) in males and, accordingly, in females. This was also reflected by a logistic regression model including all available samples from both cohorts comprising CHD5 measurements (n = 104, odds ratio 1.38, 95% CI 1.07-1.79, P = 0.01). However, this association was driven by males (odds ratio 1.62, 95% CI 1.10-2.38, P = 0.01) and CHD5 Ct values ≤ 11 since removing low CHD5 Ct values from this model, converted to insignificance (P = 0.19). A second male subcohort comprising high CHD5 Ct values ≥ 14.4 in both cohorts (n = 5) appeared associated with survival. Removing these high CHD5 Ct values converted the model borderline significant (P = 0.051). Based on the probability function of the receiver operating characteristics (ROC) curves, 8 (12.3%) and 5 (7.7%) from 65 pre-exposure RNA measurements in males, death and survival could be predicted with a negative and positive predictive value ranging between 85-100%. An associated odds ratio reflected a 62% elevated risk for dying or surviving per unit change (Ct-value) in gene expression, considering the before-mentioned CHD5 thresholds in RNA copy numbers. In conclusion, we identified two subsets of male animals characterized by increased (Ct values ≤ 11) and decreased (Ct values ≥ 14.4) CHD5 GE copy numbers before radiation exposure, which independently of the cohort, radiation exposure or treatment appeared to predict the death or survival in males.
Read full abstract