Mantle-derived eclogite and pyroxenite xenoliths from the Jurassic Voyageur kimberlite on the northern Slave craton in Arctic Canada were studied for garnet and clinopyroxene major and trace element compositions, clinopyroxene Pb and garnet O isotopic compositions, and garnet Fe3+/ΣFe contents. The Voyageur xenoliths record a wide range of pressures, but are cooler compared to mantle xenoliths derived from the nearby, coeval Jericho kimberlite. The CaO, TiO2 and Zr contents of Voyageur eclogites increase with depth, which is also observed in northern Slave peridotite xenoliths, demonstrating ‘bottom-up’ metasomatic processes within cratonic mantle lithosphere.The Voyageur eclogites have positive Eu anomalies, flat HREEN patterns, and major element compositions that are consistent with ultimate origins from basaltic and gabbroic protoliths within oceanic lithosphere. Clinopyroxene Pb isotope ratios intercept the Stacey-Kramers two-stage terrestrial Pb evolution curve at ca. 2.1Ga, and form an array towards the host kimberlite, indicating isotopic mixing. The 2.1Ga eclogite formation age broadly overlaps with known Paleoproterozoic subduction and collision events that occurred along the western margin of the Slave craton. Unlike the eclogites, the Voyageur pyroxenites contain garnet with distinctive fractionated HREEN, sinusoidal REE patterns of calculated bulk rocks, and clinopyroxene with 206Pb/204Pb ratios that intercept the Stacey-Kramers curve at 1.8Ga. This suggests a distinct origin as Paleoproterozoic high-pressure mantle cumulates. However, the pyroxenite Pb isotope ratios fall within the eclogite array and could also be explained by protoliths formation at ca. 2.1Ga followed by minor isotopic mixing during mantle metasomatism. Thus, an alternative scenario involves pyroxenite formation within the mantle section of Paleoproterozoic oceanic lithosphere followed by variable metasomatism after incorporation into cratonic mantle lithosphere. This model allows for a linked petrogenesis of the Voyageur eclogites (crust) and pyroxenites (mantle) as part of the same subducting oceanic slab.Oxygen fugacity determinations for one pyroxenite and ten eclogite xenoliths show a range of 3 log units, from −4.6 to −1.6 ΔFMQ, similar to the range observed for nearby Jericho and Muskox eclogites (ΔFMQ −4.2 to −1.5). Importantly, the northern Slave eclogite and pyroxenite mantle components are highly heterogeneous in terms of redox state provided that they range from reduced to oxidized relative to Slave peridotite xenoliths.Moreover, the Voyageur eclogites do not exhibit any trend between oxidation state and equilibration depth, which contrasts with the downward decrease in fO2 shown by Slave and worldwide cratonic peridotite xenoliths. Our investigation of mantle eclogite and pyroxenite fO2 reinforces the important influence of recycled mafic components in upper mantle processes, because their high and variable redox buffering capacity strongly controls volatile speciation and melting relations under upper mantle conditions.
Read full abstract