A spatio-temporal saliency-based frame rate up-conversion (FRUC) approach is proposed, which achieves better quality of interpolated frames and invalidates existing texture variation-based FRUC detectors. A spatio-temporal saliency model is designed to select salient frames. After obtaining initial motion vector field by texture- and color-based bilateral motion estimation, two motion vector refining (MVR) schemes are adopted for high and low saliency frames to hierarchically refine the motion vectors, respectively. To produce high-quality interpolated frames, image enhancement are performed for salient frames after frame interpolation. Due to distinct MVR schemes, there are different degrees of texture information in interpolated frames. Some edge and texture information is supplemented into salient frames as post-processing, which can invalidate existing texture variation-based FRUC detectors. Experimental results show that the proposed approach outperforms state-of-the-art works in both objective and subjective qualities of interpolated frames, and achieves the purpose of FRUC anti-forensics.
Read full abstract