Climate change has led to changes in the strength of directional selection on seasonal timing. Understanding the causes and consequences of these changes is crucial to predict the impact of climate change. But are observed patterns in one population generalizable to others, and can spatial variation in selection be explained by environmental variation among populations? We used long-term data (1955-2022) on blue and great tits co-occurring in four locations across the Netherlands to assess inter-population variation in temporal patterns of selection on laying date. To analyse selection, we combine reproduction and adult survival into a joined fitness measure. We found distinct spatial variation in temporal patterns of selection which overall acted towards earlier laying, and which was due to selection through reproduction rather than through survival. The underlying relationships between temperature, bird and caterpillar phenology were however the same across populations, and the spatial variation in selection patterns is thus caused by spatial variation in the temperatures and other habitat characteristics to which birds and caterpillars respond. This underlines that climate change is not necessarily equally affecting populations, but that we can understand this spatial variation, which enables us to predict climate change effects on selection for other populations.
Read full abstract