Dados derivados de sensoriamento remoto aliados ao uso de técnicas de classificação digital de imagens fornecem uma visão sinóptica e informações sobre a dimensão temporal dos fenômenos espaciais, possibilitando gerar informações sobre a dinâmica e os padrões espaciais da paisagem em áreas de grandes extensões territoriais como a Amazônia. Nos mapeamentos extensivos, como os realizados com imagens de satélite pelo INPE para a Amazônia Legal, é comum a definição e descrição de classes de uso e cobertura da terra em função da resolução espacial e radiométrica dos sensores utilizados. Por essa razão, pequenas áreas que não atingem o tamanho mínimo da área de mapeamento e/ou com usos diversificados são, em geral, agregadas em uma única classe. Esse é o exemplo da classe denominada Mosaico de Ocupação presente na legenda do sistema de monitoramento do uso e cobertura da terra da Amazônia-TerraClass. Esta classe procura representar, em parte, a agricultura familiar, no entanto, como o mapeamento é feito pelo sensor TM ou OLI dos satélites da série Landsat, com resolução espacial de 30m e como o TerraClass define uma área mínima de mapeamento de 6,25 hectares (ha), a identificação de pequenas áreas agrícolas é comprometida, pois essas categorias são agregadas em classes mistas e não são mais distinguíveis. Para estudos que procuram dar visibilidade aos padrões espaciais de atividades de produção de pequena escala torna-se necessário realizar o refinamento dessas classes com dados de resolução espacial com melhor definição. Neste contexto, o objetivo desse trabalho é testar três algoritmos semiautomáticos de classificação, baseados em pixel e em regiões: os algoritmos MAXVER, Bhattacharya e K-Vizinho Mais Próximo (KNN), para avaliar a capacidade de refinamento da classe Mosaico de Ocupação do dado produzido pelo TerraClass-2014. A área de estudo compreende parte dos municípios de Cametá, Mocajuba e Baião, localizados na região Nordeste do Pará, onde a produção de mandioca, pimenta-do-reino, cacau e açaí têm grande importância econômica para população local. Para o mapeamento das categorias contidas na classe Mosaico de Ocupação, foram utilizadas imagens do RapidEye, sensor REIS, ortoimagens com 5m de resolução espacial. Foi estimada a exatidão global dos algoritmos testados obtendo-se índices de 26%, 38% e 78%, para os algoritmos MAXVER, Bhattacharya e K-Vizinho Mais Próximo, respectivamente. Além da maior exatidão Global (78%), o algoritmo K-Vizinho Mais Próximo apresentou melhores resultados relativo às classes de vegetação secundária, hidrografia, e pasto sujo, com mais de 90% de acerto. A classe agricultura anual de pequena escala apresentou acerto de 62%, enquanto o índice de acerto dos outros dois algoritmos testados não passou de 8%. A abordagem metodológica desenvolvida demonstrou a viabilidade do uso das imagens de alta resolução espacial e de métodos semiautomáticos para a classificação de classes de uso e cobertura da terra associadas à classe Mosaico de Ocupação do TerraClass. A metodologia pode ser utilizada para complementar às atuais bases de dados existentes para a Amazônia (TerraClass, MapBiomas e IBGE), explicitando as categorias agrícolas de produção em pequena escala, dando visibilidade a esses sistemas de produção, frequentemente negligenciados nos mapeamentos que abrangem grandes extensões territoriais.