Contemporary research to better understand free-living fall risk assessment in Parkinson's disease (PD) often relies on the use of wearable inertial-based measurement units (IMUs) to quantify useful temporal and spatial gait characteristics (e.g., step time, step length). Although use of IMUs is useful to understand some intrinsic PD fall-risk factors, their use alone is limited as they do not provide information on extrinsic factors (e.g., obstacles). Here, we update on the use of ergonomic wearable video-based eye-tracking glasses coupled with AI-based computer vision methodologies to provide information efficiently and ethically in free-living home-based environments to better understand IMU-based data in a small group of people with PD. The use of video and AI within PD research can be seen as an evolutionary step to improve methods to understand fall risk more comprehensively.
Read full abstract