This study aimed to explore how positional performance varies across different youth age groups and during matches in football competitions. The study encompassed 160 male outfield youth football players (n = 80, under-13, U13; n = 80, under-15, U15) who belonged to the starting line-up and played the entire first half of each match. The players' positional data were gathered through the global positional system for each of the eight matches performed by each age group. The frequency of near-in-phase synchronization based on speed displacements, spatial exploration index, and the distance to the nearest teammate and opponent were used as variables. Additionally, each match half was segmented into three equal parts to assess changes over time and used as a period factor along with age group. The results indicated that U13 players showed a significant decrease (from small to large ES) in synchronization speed and spatial exploration index throughout the first half of the match, along with a decrease in the distance to the nearest opponent. In contrast, U15 players exhibited most changes during the third segment of the half, with a decrease in speed synchronization and spatial exploration, but an increase in the distance and regularity to the nearest opponent. Comparing both age groups revealed significant differences in speed synchronization across the entire half of the match and within each segmented period (from small to large ES), with U13 consistently showing higher values. The study highlights that long durations in 11 vs. 11 matches might not provide an appropriate learning environment in the U13 age group. Conversely, the U15 group displayed better capacity for tactical adjustments over time, suggesting a higher level of tactical maturity. Overall, these findings emphasize the importance of adapting youth football training and competition structures to the developmental needs and capabilities of different age groups to optimize learning and performance outcomes.
Read full abstract