Determining sources and spatial distributions of potentially toxic elements (PTEs) is a crucial issue of soil pollution survey. However, uncertainty estimation for source contributions remains lack, and accurate spatial prediction is still challenging. Robust Bayesian multivariate receptor model (RBMRM) was applied to the soil dataset of Qingzhou City (8 PTEs in 429 samples), to calculate source contributions with uncertainties. Multi-task convolutional neural network (MTCNN) was proposed to predict spatial distributions of soil PTEs. RBMRM afforded three sources, consistent with US-EPA positive matrix factorization. Natural source dominated As, Cr, Cu, and Ni contents (78.5 %∼86.1 %), and contributed 37.1 %, 61.0 %, and 65.9 % of Cd, Pb, and Zn, exhibiting low uncertainties with uncertainty index (UI) < 26.7 %. Industrial, traffic, and agricultural sources had significant influences on Cd, Pb, and Zn (30.2 %∼61.9 %), with UI < 39.3 %. Hg originated dominantly from atmosphere deposition (99.1 %), with relatively high uncertainties (UI=87.7 %). MTCNN acquired satisfactory accuracies, with R2 of 0.357–0.896 and nRMSE of 0.092–0.366. Spatial distributions of As, Cd, Cr, Cu, Ni, Pb, and Zn were influenced by parent materials. Cd, Hg, Pb, and Zn showed significant hotspot in urban area. This work conducted a new approach exploration, and practical implications for soil pollution regulation were proposed.
Read full abstract