The accurate identification of pollutant sources and their spatial distribution is crucial for mitigating soil heavy metals (SHMs) pollution. However, the receptor model struggles to effectively categorize pollutant sources and pinpoint their locations and dispersion trends. We propose a novel comprehensive framework that combines a receptor model, random forest (RF), affinity propagation (AP) algorithm, and bivariate local indicator of spatial association (BLISA), to optimize the traditional approach for tracing SHMs sources in industrial regions. We apportioned SHMs sources using a receptor model combined with RF, while BLISA combined with AP methods were employed to accurately locate the source areas and identify their dispersion tendencies. The results revealed that SHMs originated from mixed sources of equipment manufacturing agglomeration and agricultural activities (59.0%), geological background (30.5%), and emissions from heavily-polluting industries (10.5%). The pollution sources of soil Cd and Pb were located near specific industries, showing characteristics of multi-site concurrent pollution diffusion influenced by their proximity to industrial sites. The spatial distribution of Cr, Cu, and Zn sources was concentrated in high-density urban industrial areas, transitioning from point to nonpoint sources, with diffusion patterns influenced by the spatial agglomeration effect of industries. Our enhanced framework accurately identifies the location of SHMs sources and their dispersion tendencies, thereby improving regional soil pollution management.