BackgroundGPR151 is a kind of protein belonging to G protein-coupled receptor family that is closely associated with a variety of physiological and pathological processes.The potential use of GPR151 as a therapeutic target for the management of metabolic disorders has been demonstrated in several studies, highlighting the demand to explore its activators further. Activity prediction serves as a vital preliminary step in drug discovery, which is both costly and time-consuming. Thus, the development of reliable activity classification model has become an essential way in the process of drug discovery, aiming to enhance the efficiency of virtual screening.ResultsWe propose a learning-based method based on feature extractor and deep neural network to predict the activity of GPR151 activators. We first introduce a new molecular feature extraction algorithm which utilizes the idea of bag-of-words model in natural language to densify the sparse fingerprint vector. Mol2vec method is also used to extract diverse features. Then, we construct three classical feature selection algorithms and three types of deep learning model to enhance the representational capacity of molecules and predict activity label by five different classifiers. We conduct experiments using our own dataset of GPR151 activators. The results demonstrate high classification accuracy and stability, with the optimal model Mol2vec-CNN significantly improving performance across multiple classifiers. The svm classifier achieves the best accuracy of 0.92 and F1 score of 0.76 which indicates promising applications for our method in the field of activity prediction.ConclusionThe results suggest that the experimental design of this study is appropriate and well-conceived. The deep learning-based feature extraction algorithm established in this study outperforms traditional feature selection algorithm for activity prediction. The model developed can be effectively utilized in the pre-screening stage of drug virtual screening.
Read full abstract