We have found the motivation for this paper in the research of a quantized closed Friedmann cosmological model. There, the second‐order linear ordinary differential equation emerges as a wave equation for the physical state functions. Studying the polynomial solutions of this equation, we define a new functional product in the space of real polynomials. This product includes the indexed weight functions which depend on the degrees of participating polynomials. Although it does not have all of the properties of an inner product, a unique sequence of polynomials can be associated with it by an additional condition. In the special case presented here, we consider the Hermite‐type weight functions and prove that the associated polynomial sequence can be expressed in the closed form via the Hermite polynomials. Also, we find their Rodrigues‐type formula and a four‐term recurrence relation. In contrast to the zeros of Hermite polynomials, which are symmetrically located with respect to the origin, the zeros of the new polynomial sequence are all positive. Copyright © 2015 John Wiley & Sons, Ltd.
Read full abstract