Weak-coupled space-division multiplexing (SDM) technique using multi-core fibers (MCF) has attracted great research interests due to its huge capacity potential and compatibility with high-speed transceivers. In this paper, we demonstrate the first real-time 128 Tb/s and 224 Tb/s single-span 106-km field trial over deployed 4-core and 7-core MCF cable with 65 multi-core fusion splicing using commercial DP-QPSK 400 Gb/s backbone optical transport network (OTN) transceivers. The 4-core and 7-core transmission systems still reserve with more than 5.5-dB and 3.5-dB OSNR margins respectively thanks to the 130-Gbaud DP-QPSK modulation format enabled by optoelectronic multiple-chip module (OE-MCM) packaging technique. The MCF cable has a length of 17.69 km and the contained MCFs are with standard 245-μm coating, which enables the compatibility with standard cabling processing. This field trial marks the maturity of MCF-based weakly-coupled SDM transmission systems and is an important milestone towards the implementation of MCF in high-speed terrestrial cable systems.
Read full abstract