On a normal projective variety the locus of μ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mu $$\\end{document}-stable bundles that remain μ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mu $$\\end{document}-stable on all Galois covers prime to the characteristic is open in the moduli space of Gieseker semistable sheaves. On a smooth projective curve of genus at least 2 this locus is big in the moduli space of stable bundles. As an application we obtain a very different behaviour of the étale fundamental group in positive vs. characteristic 0.
Read full abstract