Ocean eddies play a crucial role in the global energy cycle and significantly impact the transport of heat, salt, and nutrients in the global ocean. Spaceborne synthetic aperture radar (SAR), with its high spatial resolution (O(20 m)) and wide coverage, is an important tool for studying ocean eddies. In this paper, we propose a deep-learning network, named EOLO, to automatically detect ocean Eddies observed in C-band spaceborne SAR imagery, based on the You-Only-Look-Once (YOLO) deep learning algorithm. A Sentinel-1 (S1) SAR data-based ocean eddy dataset (named EddyDataset) is established to train the EOLO network. To effectively improve the performance of the EOLO network, we introduced a channel attention mechanism, adopted the up-sampling operator with the larger receptive field, and improved feature fusion method, anchor box size, and loss function. With the support of a high-performance detection network, the geographic information extraction module based on the affine geographic transformation model and a data preprocessing module were added, making EOLO an application-level framework. Our experiment results on EddyDataset demonstrate that EOLO achieves a high quality of eddy detection with 91.5% average precision. We further applied EOLO to entire scenes of S1 images to detect eddies in the Red Sea, the Baltic Sea, and the Western Mediterranean Sea, achieving 96.6%, 98.8% and 98.9% precision, respectively. Moreover, EOLO was used to extract size and location information of ocean eddies based on 6135 S1 scenes acquired in 2021 over the Western Mediterranean Sea. Their spatial characteristics were derived and compared with the eddies extracted from radar altimeter data, presenting interesting discrepancies between sub-mesoscale and mesoscale eddies in the ocean.
Read full abstract