Soybean, a source of plant-derived lipids, contains an array of fatty acids essential for health. A comprehensive understanding of the fatty acid profiles in soybean is crucial for enhancing soybean cultivars and augmenting their qualitative attributes. Here, 180 F10 generation recombinant inbred lines (RILs), derived from the cross-breeding of the cultivated soybean variety 'Jidou 12' and the wild soybean 'Y9,' were used as primary experimental subjects. Using inclusive composite interval mapping (ICIM), this study undertook a quantitative trait locus (QTL) analysis on five distinct fatty acid components in the RIL population from 2019 to 2021. Concurrently, a genome-wide association study (GWAS) was conducted on 290 samples from a genetically diverse natural population to scrutinize the five fatty acid components during the same timeframe, thereby aiming to identify loci closely associated with fatty acid profiles. In addition, haplotype analysis and the Kyoto Encyclopedia of Genes and Genomes pathway analysis were performed to predict candidate genes. The QTL analysis elucidated 23 stable QTLs intricately associated with the five fatty acid components, exhibiting phenotypic contribution rates ranging from 2.78% to 25.37%. In addition, GWAS of the natural population unveiled 102 significant loci associated with these fatty acid components. The haplotype analysis of the colocalized loci revealed that Glyma.06G221400 on chromosome 6 exhibited a significant correlation with stearic acid content, with Hap1 showing a markedly elevated stearic acid level compared with Hap2 and Hap3. Similarly, Glyma.12G075100 on chromosome 12 was significantly associated with the contents of oleic, linoleic, and linolenic acids, suggesting its involvement in fatty acid biosynthesis. In the natural population, candidate genes associated with the contents of palmitic and linolenic acids were predominantly from the fatty acid metabolic pathway, indicating their potential role as pivotal genes in the critical steps of fatty acid metabolism. Furthermore, genomic selection (GS) for fatty acid components was conducted using ridge regression best linear unbiased prediction based on both random single nucleotide polymorphisms (SNPs) and SNPs significantly associated with fatty acid components identified by GWAS. GS accuracy was contingent upon the SNP set used. Notably, GS efficiency was enhanced when using SNPs derived from QTL mapping analysis and GWAS compared with random SNPs, and reached a plateau when the number of SNP markers exceeded 3,000. This study thus indicates that Glyma.06G221400 and Glyma.12G075100 are genes integral to the synthesis and regulatory mechanisms of fatty acids. It provides insights into the complex biosynthesis and regulation of fatty acids, with significant implications for the directed improvement of soybean oil quality and the selection of superior soybean varieties. The SNP markers delineated in this study can be instrumental in establishing an efficacious pipeline for marker-assisted selection and GS aimed at improving soybean fatty acid components.
Read full abstract