Abstract. Deep-water fold-and-thrust belt (DWFTB) systems are gravity-driven collapse structures often found in passive margin settings and are comprised of a linked up-dip extensional domain, central transitional/translational domain, and down-dip compressional domain. Many Late Cretaceous DWFTB systems occur along the SW African passive margin with multiple, over-pressurized, seaward-dipping shale detachment surfaces accommodating gravitational slip. In this study we use 3D reflection seismic data to constrain the strato-structural evolution of the translational and compressional domains of a Late Cretaceous DWFTB system and the overlying Cenozoic deposits in the Orange Basin, South Africa. The stratigraphy and structure of the Late Cretaceous DWFTB system is shown to have controlled fundamental sedimentary processes and the stability of the evolving margin. The compressional domain exhibits large-scale landward-dipping DWFTBs with thrust faults detaching the main Turonian shale detachment surface at depth and terminating at the early Campanian surface. A major ∼ 7 km wide seafloor slump scar reflecting margin instability occurs directly above a syncline of the same width from the buried DWFTB system's compressional domain. The translational domain is imaged as a complex region displaying overprinted features of both extensional and compressional tectonics with the downslope translation of sediment comprising listric normal and then thrust and oblique-slip faults distally. Thrust sheets are segmented along strike by extensive oblique-slip faults which extend from the translational domain into the down-dip compressional domain. Smaller, localized fold-and-thrust belts are found directly below the kilometre-scale DWFTB system in the down-dip compressional domain detaching a lower, Albian shale detachment surface which corresponds to an older gravitational collapse. The upward propagation of normal and oblique-slip faults with progressive sedimentation is hindered by the Oligocene or Miocene stratigraphic markers corresponding to mass erosional processes in the Cenozoic. A large (∼ 2.3 km wide), roughly slope-perpendicular Oligocene submarine canyon formed by turbidity currents is attributed to a major sea-level fall at ∼ 30 Ma. Oceanographic circulation is shown to have held a significant control on the deposition of mid-Miocene to present-day sedimentary sequences. Between 1200 to 1500 m water depths along the upper continental slope well-preserved extensive slope-parallel, sinusoidal channel-like features occur on the Miocene stratigraphic marker. The channels are confined within a ∼ 14 km wide zone at the interface of the upper northward-flowing Antarctic Intermediate Water (AAIW) and deeper southward-flowing North Atlantic Deep Water (NADW) currents. The erosive interaction of these oppositely flowing bottom currents combined with the effects of the Benguela Upwelling System (BUS), all of which formed or intensified at ∼ 11 Ma, are responsible for the creation and preservation of the extensive slope-parallel channels. This study shows the difference in structural styles of the translational and compressional domains of a Late Cretaceous DWFTB system and the processes responsible for mass-scale erosion in the Cenozoic.
Read full abstract