In northern Europe, a long history of human exploitation effectively eliminated legacies of natural disturbances in mixed oak forests and we currently lack understanding of the role of natural disturbance factors in affecting oak regeneration into the forest canopies. We compiled dendrochronological, observational and paleochronological data from Southern Sweden to discuss the role of forest fires in oak (Quercus spp.) dynamics. We analyzed oak age structure and its growth dynamics in six southern Swedish forests, which experienced fires between 42 and 158 years prior to our sampling. Extending our analysis over longer time frames, we studied the relationship between sediment charcoal and oak pollen in an area of south-eastern Sweden, where oak has been a common canopy species. In three of the study sites, forest fires resulted in increased oak regeneration. Although fires were generally not associated with a wave of growth releases in surviving trees, the mean basal area growth rate of oaks increased by a range of 108% to 176%, following the fires. The overall pattern indicated that historical fires in oak-dominated forests were of low severity, did not kill canopy oaks, and yet provided a window of regeneration opportunities for that species. Post-fire sprouting of oak and an increase in oak seedling densities following modern prescribed fires are consistent with this explanation. Consistent with this conclusion were significant positive correlations between charcoal concentration and the oak pollen percentage in a site in southeastern Sweden. We discuss the co-occurrence of oak and pine in the historical southern Swedish landscape, as a possible analogy to eastern North American oak-pine forests. Modern conservation policies aimed at the preservation of oak in the southern Swedish landscape should consider the use of low severity fires to maintain natural oak regeneration.
Read full abstract