Mine wastes create harsh recruitment conditions for forest tree seedlings, especially waste rock piles where erodible slopes are prone to drought. Plantations using fast-growing tree species can potentially accelerate the conversion of degraded mine sites into forests through facilitation of tree recruitment, while contributing to the stability of slopes. In this study, hybrid poplars were tested as a means of achieving reclamation objectives by providing shelter for forest tree seedlings on waste rock slopes (3H:1V ratio) in the Canadian southern boreal region. Density effects of young hybrid poplars were assessed on the emergence and survival of early, mid and late successional species, naturally occurring or hand-seeded, and on the understory micro-environmental parameters in plantations of different spacings (1 × 1, 2 × 2, 4 × 4 m and control without planted trees). Results were also compared in 2 × 2-m plantations with and without a hydroseeded herbaceous cover, traditionally used to control erosion in slopes. During the 2nd growing season of the plantations, seedling emergence of naturally established Salicaceae (Populus and Salix) species followed a quadratic pattern along the density gradient, as emergence values were higher under an intermediary density. Nonetheless, decrease in light transmission emerged as a limiting factor of seedling survival for these early-successional, shade-intolerant species by the next summer. Following a spring sowing experiment in the 3rd growing season of the plantations, emergence rates for later-successional Picea glauca and Abies balsamea seedlings increased with hybrid poplar density. During their peak emergence period, in early season, higher soil moisture content was found under denser cover. However, at the end of the third year of the plantations, only A. balsamea showed moderate increase in early recruitment success rates under denser tree cover. In hydroseeded plots, a competitive effect of the herbaceous cover was observed on Salicaceae emergence and A. balsamea survival. These results suggest that planting of young plantations without a hydroseeded cover may offer a more suitable solution in order to quickly provide early recruitment opportunities for later-successional seedlings in waste rock slopes. Despite this, a significant decrease in moisture content recorded during the second half of the 3rd growing season under the 1 × 1-m cover, compared to the 2 × 2-m, likely signalled an increasing competitive effect from hybrid poplars, which may compromise their nursing potential in the longer term. Therefore, further monitoring is imperative for a better understanding of longer-term facilitation and competition interactions between nurse trees and understory seedlings in waste rock slopes, where competition for limited resources, such as water, may be severe.
Read full abstract