In the last decade, a sporadic tree health syndrome affecting high-density apple plantings in North America has become known as Rapid Apple Decline (RAD) or Sudden Apple Decline (SAD). The affected apple trees were typically grafted on small dwarfing rootstocks, often displayed necrosis at the graft union, and suffered from sudden mortality that occurred over 2–3 weeks amid the growing season or a gradual decline. In 2019 and 2020, we conducted a multi-site investigation in the south Okanagan, British Columbia, Canada, to assess the stem hydraulic characteristics, stomatal conductance, leaf δ13C‰, and fruit dry matter accumulation of the declining trees during disease progression. In trees that died, mortality appeared to be associated with severe disruption in xylem water transport at the damaged graft union, followed by abrupt hydraulic failure. In contrast, symptomatic trees that did not die exhibited the moderately declined plant water relations and a reduction in fruit dry matter accumulation followed by either further deterioration or eventual recovery. This pattern indicates the risk of carbohydrate depletion over gradual hydraulic decline and the importance of timely horticultural remedies. In the present study, we discuss potential horticultural practices to mitigate hydraulic dysfunctions and enhance crop tolerance.