AbstractReligious burning (RB) has been identified as a major source of atmospheric aerosols on the Qinghai‐Tibet Plateau. However, there is limited understanding of the detailed chemical composition, size distribution, and optical properties of RB aerosols in this region. To characterize these important aerosol properties, ambient PM2.5 and size resolved aerosols from RB emissions in Lhasa were collected during summer 2019. Organic functional group (OFG) and inorganic ion composition was measured using Fourier transform infrared spectroscopy and ion chromatography, respectively. The ambient PM2.5 was dominated by organic components, with the OFG concentrations significantly higher during religious events, reflecting the substantial impact of RB emissions on local air quality. The RB aerosols were characterized by high fractions of alkane (34%), hydroxyl (29%), and carboxylic acid (13%) groups, with peak mass in the accumulation mode (0.56–1.00 μm). The high abundance of hydroxyl group and the size distribution pattern suggested that the RB aerosols were formed from volatilization of fuel materials followed by unaltered condensation, a process that may be unique to the low‐temperature, low‐oxygen burning in the scattered burners at the temples. The absorption coefficient of RB aerosols showed similar size distribution to the mass size distribution, but the absorption Ångström exponent displayed the lowest value in the 0.56–1.00 μm size mode. This specific size distribution aligned with the mass fraction of carboxylic acids and mirrored the mass proportion of alkanes, suggesting that smaller and larger particles were enriched with substances that have higher light‐absorbing capabilities.
Read full abstract