Rice (Oryza) is a genus in the Gramineae family, which has grown widely all over the world and is a staple food source for people’s survival. The genetic information of rice has garnered significant attention in recent years, prompting numerous researchers to conduct extensive investigations in this field. But rice mitochondrial codon usage patterns have received little attention. The present study systematically analyzed the codon usage patterns and sources of variance in the mitochondrial genome sequences of five rice species by the CodonW and R software programs. Our results revealed that the GC content of codons in rice mitochondrial genome genes was determined to be 43.60%. Notably, the individual codon positions exhibited distinct GC contents: 48.00% for position 1, 42.65% for position 2, and 40.16% for position 3. These findings suggest the preference of the rice mitochondrial genome for codons ending in A or U. A weak codon bias was observed, with the effective number of codons (ENC) varying between 40.02 and 61.00, with an average value of 54.34. Subsequently, we identified 25 identical high-frequency codons in five rice mitochondrial genomes, with 11 codons ending in A and 12 codons ending in U. The regression lines in the neutrality plot exhibited slopes of less than 0.5 in five rice species, indicating a predominant role of natural selection, while mutation pressure remained relatively insignificant. In the PR2-plot analysis, most of the genes were located in the right half of the plot, indicating that the third base of the synonymous codon was preferred to end in G than C. Additionally, the ENC plot and ENC ratio analysis unveiled that codon preferences in the rice mitochondrial genome were predominantly influenced by natural selection rather than mutational pressure. The analysis of correspondence revealed distinct variations in the codon usage pattern across five rice mitochondrial genomes. Based on the RSCU values of species, a cluster tree was inconsistent with the mitochondrial genetic data, indicating that RSCU data could not be used as a basis for classification at the species level in the Oryza genus. These results will help decide the specific types of natural selection pressures influencing codon usage and improve the expression of exogenous genes in rice mitochondrial genomes by optimizing their codons.
Read full abstract