Sweet sorghum has a large biomass and strong cadmium (Cd) absorption capacity, which has the potential for phytoremediation of Cd-contaminated soil. In order to study the Cd phytoremediation effect of sweet sorghum assisted with citric acid on the typical parent materials in southern China, a field experiment was carried out in two typical parent material farmland areas (neutral purple mud field and jute sand mud field) with Cd pollution in Hunan Province. The results showed that:① Citric acid had no inhibitory effect on the growth of sweet sorghum. After the application of citric acid, the aboveground biomass of sweet sorghum at the maturity stage increased by 10.1%-24.7%. ② Both sweet sorghum planting and citric acid application reduced the soil pH value, and the application of citric acid further reduced the soil pH value at each growth stage of sweet sorghum; this decrease was greater in the neutral purple mud field, which decreased by 0.24-0.72 units. ③ Both sweet sorghum planting and citric acid application reduced the total amount of soil Cd, and the decreases in the neutral purple mud field and jute sand mud field were 23.8%-52.2% and 17.1%-31.8%, respectively. The acid-extractable percentage of soil Cd in both places increased by 38.6%-147.7% and 4.8%-22.7%, respectively. ④ The application of citric acid could significantly increase the Cd content in various tissues of sweet sorghum. The Cd content in the aboveground part of the plant in the neutral purple mud field was higher than that in the jute sand mud field, and the Cd content in stems and leaves was 0.25-1.90 mg·kg-1 and 0.21-0.64 mg·kg-1, respectively. ⑤ After applying citric acid, the Cd extraction amount of sweet sorghum in neutral purple mud soil in the mature stage reached 47.56 g·hm-2. In summary, citric acid could enhance the efficiency of sweet sorghum in the phytoremediation of Cd-contaminated soil, and the effect was better in neutral purple mud fields. This technology has the potential for remediation coupled with agro-production for heavy metal-contaminated farmland.
Read full abstract