Neutron stars manifest themselves as different classes of astrophysical sources that are associated to distinct phenomenology. Here we focus our attention on magnetars (or strongly magnetized neutron stars) that are associated to Soft Gamma Repeaters and Anomalous X-ray Pulsars. The magnetic field on surface of these objects, reaches values greater than [Formula: see text] G. Under intense magnetic fields, relativistic effects begin to be decisive for the definition of the structure and evolution of these objects. We are tempted to question ourselves to how strengths fields affect the structure of neutron star. In this work, our objective is study and compare two solutions of Einstein-Maxwell equations: the Bonnor solution, which is an analytical solution that describe the exterior spacetime for a massive compact object which has a magnetic field that is characterize as a dipole field and a complete solution that describe the interior and exterior spacetime for the same source found by numerical methods). For this, we describe the geodesic equations generated by such solutions. Our results show that the orbits generated by the Bonnor solution are the same as described by numerical solution. Also, show that the inclusion of magnetic fields with values up to [Formula: see text]G in the center of the star does not modify sharply the particle orbits described around this star, so the use of Schwarzschild solution for the description of these orbits is a reasonable approximation.
Read full abstract