Volume integral methods for the solution of eddy current problems are very appealing in practice since only the conducting regions need to be meshed. However, they require the assembly and storage of a dense stiffness matrix. With the objective of cutting down assembly time and memory occupation, low-rank approximation techniques like the Adaptive Cross Approximation (ACA) have been considered a major breakthrough. Recently, the VINCO framework has been introduced to reduce significantly memory occupation and computational time thanks to a novel factorization of the dense stiffness matrix. The aim of this paper is introducing a new matrix compression technique enabled by the VINCO framework. We compare the performance of VINCO framework approaches with state-of-the-art alternatives in terms of memory occupation, computational time and accuracy by solving benchmark eddy current problems at increasing mesh sizes; the comparisons are carried out using both direct and iterative solvers. The results clearly indicate that the so-called VINCO-FAIME approach which exploits the Fast Multipole Method (FMM) has the best performance.
Read full abstract