The interaction of an antiviral drug Molnupiravir (MOL) with calf thymus DNA (CT-DNA) was investigated using a series of biophysical techniques. A significant hyperchromism with a blue shift nm in the UV-Vis spectra indicated a high binding affinity of MOL for CT-DNA with binding constants in the order of 105 M−1. Competitive fluorescent dye displacement assays with ethidium bromide (EB) and Hoechst 33258 suggested an intercalative mode of binding of MOL with CT-DNA. Thermodynamic profiles determined using fluorescence titration and isothermal titration calorimetric (ITC) analysis matched well with each other. The negative free energy change revealed that the MOL/CT-DNA complexation is a spontaneous process. The negative values of enthalpy and entropy changes indicated that H-bonding and van der Walls interactions play dominant roles in stabilizing the complex. A decrease in viscosity of CT-DNA solution upon adding MOL indicated a partial intercalation mode of binding which was well supported by circular dichroism (CD) spectral and effect of KI and denaturation studies. Molecular docking and metadynamics simulation studies clearly showed the partial intercalation of the pyrimidine ring of MOL into the base pairs of DNA. Free energy surface (FES) contour indicated that the drug/DNA complex is stabilized by H-bonding and pi-pi/pi-cation interactions. Communicated by Ramaswamy H. Sarma