Thermal characteristics of several novel self-dyed wholly aromatic polyamide–hydrazides covalently bonded with azo groups in their main chains and containing o-hydroxy group as a substituent group in the aryl ring of the aminohydrazide part of the polymers have been investigated in nitrogen and in air atmospheres using differential scanning calorimetry, thermogravimetric analyses, infrared spectroscopy, and elemental analyses. The effect of introducing different predetermined proportions of para- and meta-phenylene moieties into the backbone chain of the polymers on their thermal characteristics has been evaluated. Azopolymers having different molecular masses of all para-oriented phenylene type units were also thermally characterized. These polymers were prepared by a low temperature solution polycondensation reaction of either 4-amino-3-hydroxybenzhydrazide or 3-amino-4-hydroxybenzhydrazide with an equimolar amount of either 4,4′-azodibenzoyl chloride (4,4′ADBC), 3,3′-azodibenzoyl chloride (3,3′ADBC), or mixtures of various molar ratios of 4,4′ADBC and 3,3′ADBC in anhydrous N,N-dimethyl acetamide containing 3 % m v−1 LiCl as a solvent at −10 °C. All the polymers have the same structural formula except the mode of linking phenylene units in the polymer chain. The content of para- and meta-phenylene moieties was varied within these polymers so that the changes in the latter were 10 mol% from polymer to polymer, starting from an overall content of 0–100 mol%. The results reveal that these polymers are characterized by high thermal stability and could be cyclodehydrated into linear aromatic polymers with alternating 1,3,4-oxadiazole and benzoxazole structural units within the same polymer approximately in the region of 200–480 °C, either in nitrogen or in air atmospheres by losing water from the hydrazide and o-hydroxybenzamide groups, respectively. Along with the cyclodehydration, the polymer may lose molecular nitrogen from the azo groups. This is not a true degradation, but rather a thermo-chemical transformation reaction of the evaluated polymers into the corresponding poly(1,3,4-oxadiazolyl-benzoxazoles). The resulting poly(1,3,4-oxadiazolyl-benzoxazoles) start to decompose in the temperature range above 330–560 °C, either in nitrogen or in air atmospheres without mass loss at a lower temperature. The thermal and thermo-oxidative stabilities of the polymers are affected by the nature and amount of arylene groups incorporated into their chains, being higher for polymers with greater content of para-oriented phenylene rings, which permits more interchain hydrogen bonds as a result of greater chain symmetry, packing efficiency, and rod-like structure. Increasing the content of para-oriented phenylene rings leads to a strong improvement in both the initial decomposition temperature as well as in the residual mass at a particular temperature. The stability of the polymers was found to be independent of their molecular masses. This confirms that high thermal stability is not a polymer property which would depends upon the length of its macromolecular chains, but rather upon its chemical structure in which all and every atomic group contributes by its own thermal stability to the macroscopic properties of the whole polymer.
Read full abstract